How to Choose the Right Industrial Material for Your Project

The United States produces around 7.6 billion tons of industrial waste every year. Some of the waste results from choosing the wrong industrial materials for the project. So, what factors should go into selecting a suitable material?

Below, we list the four factors you should consider when choosing manufacturing materials. By the end, you should have a much better idea of how to pick the best tool for the job. This way, you will avoid adding to the waste.

Environment

Consider the physical environment that the finalized project must endure. Are there factors you need to consider that might hamper how well the materials stand up to stresses?

The following are a few examples of the kinds of things that you might need to be aware of:

  • Corrosive liquids
  • Dust or detritus buildup
  • Gases and vapors
  • Inclement weather
  • Temperature extremes

Any of the above might cause wear and tear to the product and need specific material choices to counteract their effects. Some materials will stand up to certain stresses, and some will not react with specific corrosive liquids.

Durability

When debating the materials for manufacturing, you need to consider how much physical pressure the object will incur. This might happen from someone using it, but it is still as valid to consider how people will store it.

If the construction material needs to carry a load, it needs to be made of hardier materials that are not brittle. Should it need specific breakage points, these should break in a way conducive to what the item needs to do.

You must also ensure that any customizations you make to the material will hold. For example, If you plan to create latticework, it should remain strong enough even when formed into such a structure.

Cost and Budget

One of the most important things that will factor into whether you use a specific material or not is how much it costs. Before pulling the trigger on any particular material, you should consider your budget and what you can afford before pulling the trigger on any specific material.

It may be that hardier materials cost more. As such, you or your company should discuss whether you are willing to accept a less superior material due to budgetary constraints.

More on Industrial Materials

With the above information available to you, likely, you can now choose the best industrial materials for a job. First, consult us if you are still trying to find the best way to solve an industrial issue.

We have experts ready to discuss your material requirements and what you need to get a job done. So send us a message to get the best advice on the market.

 

The Ultimate Guide to Maintaining Hydraulic Clamps

Operating with hydraulic clamps may be your underlying savior if you regularly work with industrial equipment. The hydraulic clamp has become a must-have in the workplace by offering various advantages, such as a safer workplace and machine-tool efficiency.

These clamps can cut manual labor by almost half and make working feel like a breeze.  So, it’s vital to maintain them properly, or you’ll be stuck with a deficient tool.

Are you curious about how to make your hydraulic clamps last? Do you want to ensure your operations run smoothly in the future? Luckily for you, we have a comprehensive guide to help you learn how to maintain your clamps.

Continue reading to guarantee you don’t ever lose your favorite workplace tool!

Clean, Clean, Clean

It’s vital to ensure all your machine tools are clean, especially your hydraulic clamps. Having rusty machines will sacrifice your workplace’s safety. It also makes your hydraulic clamp work less effectively. 

Clean machines will result in a cleaner, faster, and better work environment. So, try to clean your machines often while also slipping in days where you do a deep cleanse. This will involve separating parts and getting into the nitty-gritty places.

Clamp care seems like a hassle, but you’ll be thankful when your hydraulic clamps work for extended periods!

Have Proper Tube Line Support

It’s easy to forget about your tube line support, but it is one of the most critical systems to maintain. Your hydraulic clamps run on a lubrication system, so keeping up with your tube line clamping is vital. In addition, it will ensure you have proper noise and vibration reduction and adequate tube mounting.

Keep Up With Oil Maintenance 

Hydraulic fluid is the blood of hydraulic machines, so you should know how to filter, clean, and change out the oil when needed. Test your oil for contaminants regularly. Make sure you know how often your oil needs to be changed and filtered.

How Often Should You Keep Up With Hydraulic Clamps Maintenance?

Hydraulic clamp care means regular check-ups to ensure it is performing correctly and safely. Don’t be a workplace with a reactive view of hydraulic clamp maintenance; when things go wrong, you’ll fix it then.

Prevent these issues from occurring in the future by keeping a schedule. As a result, you will save time and effort in the future!

Keep Up With Your Favorite Machine Tool

Learning to maintain your machine tools is a sound investment that pays off in more ways than one.

Are you interested in enhancing your maintenance skills? Then, check out a few tips on how to manage other hydraulic machines on our blog today!

Different Ways to Use Universal Joints

Based on 2021 data, manufacturers contributed $2.71 trillion annually to the United States economy. Manufacturing dramatically impacts the economy, but companies cannot do what’s necessary without the right equipment and parts.

Elements like universal joints are necessary to use and run industrial machinery and heavy equipment effectively. In addition, these can aid in the prevention of downtime and other problems within different industries.

Not sure what their applications are? Keep reading to learn more about the details.

Uses of Universal Joints

Universal joints are used in various machines that have long rotating shafts. Often you can find joints between the rear driveshafts and the transmission.

Some of the typical applications of universal joints include the following:

Universal joints are not limited to the above applications. The universal joint material can impact the quality of use.

Universal Joint Materials

Universal joints are available in thermoplastic body members or steel. Those made of thermoplastic body members have significant advantages, such as:

  • Lightweight
  • Negligible backlash
  • Corrosion-resistant
  • High-speed operation

These are typically used in light industrial applications.

Steel joints have a maximum load-carrying capacity for a given size.

Universal joints can be made from almost any material which helps in their application. Stainless steel and naval brass are common materials as well.

For particular construction usage, ball-jointed universals are also available. These are used in high-speed operation and for carrying large torques.

Types of Universal Joints

Plenty of universal joint options can help with different applications. However, in practice, some universal joints are better than others for specific projects.

For example, variable velocity joints are not feasible in automobiles because the drive shaft stays inclined. However, cross, spider, ring, ball, and trunnion types are all forms of variable velocity joints.

The other types of universal joints include:

  • Single joint
  • Double joint
  • Constant velocity joints

Rzeppa, Bendix Weiss, and Tracta are all joints categorized under constant velocity joints.

The three parts of a universal joint are the spider, the driving yoke, and the driven yoke.

Should You Use Universal Joints?

There are many types of joints, but universal joints are unique. As a result, they have many advantages for users.

Some of the benefits of using universal joints are:

  • Flexible universal coupling
  • Facilitates toque transmission between shafts
  • Cost-effective
  • Simple to assemble and dismantle
  • Permits angular displacements

To ensure toque transmission efficiency is high, it’s important to lubricate the joint properly. In addition, proper maintenance is essential to avoid wear and tear of the joints.

The Bottom Line

Universal joints are couplings or joints that connect rigid rods whose axes are bent to each other. They are commonly used in shafts that complete rotary motion.

Various industries can use universal joints and reap their benefits. For your high-demand industrial applications that require a fix for drive shaft misalignment, choose Kor-Pak.

We are the leading distributor of Ameridrives products and can supply you with their famous industrial couplings. Contact us now for more information.

 

3 Tips for Choosing an Industrial Braking System

Industrial braking systems are one of the most critical pieces of technology around. In essence, the job of a braking system is to absorb energy and bring whatever it is on to a halt.

Read below for three of the most practical tips for choosing the right industrial braking system to match all your needs.

1. Ensure a Warranty Is Included

Your braking system components are constantly exposed to varied types of pressure. So first, ensure all elements have a factory warranty to protect you from defects. Then, should something go wrong, you could quickly get the part replaced.

2. Get Braking System Parts from a Trusted Brand

With so many brands to choose from today, stick to the tried and tested brands known for braking components and have the backing to support their customers. 

Quality should never be compromised when choosing a brand, as the fallout could be catastrophic.

3. Know What Type of Braking System You Need 

Choosing the correct braking system will be a significant factor in whether it suits your needs or not. The following types of braking systems and tips will help you decide.

Spring Applied Brakes

Spring applied brakes act to decelerate a load in the event of a power failure or however you choose the release mechanism to be disengaged. This type of system is suitable for robotics and automation engineering solutions.

Fail-Safe Brakes

Fail-safe brakes are designed to kick in when there is an immediate power cut. Fail-safe brakes have one purpose, and that is to avoid catastrophic accidents. Such a brake system will be applicable for an elevator. 

Pneumatic Brakes

Pneumatic brakes are one of the older brake systems; they use compressed air to drive a piston and apply force to a braking pad. A straightforward system, you can use pneumatic brakes in almost every braking system.

Electromagnetic Brakes

As the name suggests, electromagnetic brakes use electromagnetic force to cause friction, which asserts the necessary stopping action. Therefore, this system is perfect for avoiding the heat dissipation that friction brakes cause.

Hydraulic Brakes

Hydraulic brakes use compressed brake fluid to generate the required baking force. Hydraulic braking systems are known for being simplistic and very reliable and are the primary type of braking systems in industrial applications. From winches to cranes, hydraulic braking systems should be your number one system to turn to. 

Make the Right Choice Today

Choosing the right braking system doesn’t have to be complicated. The right braking system coupled with a trusted manufacturer will not only keep your machine operator healthy, but your machine will stand the test of time.

Are you looking for the best industrial braking system parts on the market? Not sure where to look? Go to our manufacturer’s page and find the best components available on the market! 

A Complete Guide to Phenolic Laminates and Their Uses

Machine and equipment breakdowns cost businesses money. So it’s vital to choose durable parts to withstand heavy use over a long period. Phenolic laminate parts are the ideal solution for many industries.

The use of this composite material is growing rapidly across different sectors. Analysts predict that the phenolic resins market will grow to $12.6 billion by 2030.

Advances in technology have made these products more affordable and versatile. As a result, manufacturers are switching from metal or plastic to phenolic laminate. Keep reading to learn more about this composite material and its applications.

What are Phenolic Laminates?

A phenolic laminate is made by applying heat and pressure to layers of material. Makers impregnate layers with thermosetting resins for strength.

You can then use various phenolic materials to create different types of laminates. The most popular are linen, canvas, paper, or glass cloth.

The resulting product is a hard, durable component. And it’s this strength that makes it perfect for use in many industries.

What are the Benefits of Phenolic Laminates?

Yes, phenolic composites are strong, but this is not the only benefit. Phenolic laminates can also be molded into shapes and sizes to suit different needs. Standard forms are sheets, rods, or tubes which can be cut to size.

This composite laminate is also water-resistant and lightweight. Thus, it often makes an excellent replacement for metal parts.

Another benefit is that phenolic laminates are resistant to various chemicals and heat. Some phenolic composites are infused with epoxy resins that make them fire-resistant.

Also, this material does not conduct electricity, making it an excellent insulator. And lastly, phenolic laminate products can be self-lubricating. This helps machine parts last longer due to reduced friction.

Phenolic Laminates Uses

Phenolic laminates have many applications across diverse industries. This is thanks to their versatility and outstanding electrical properties.

For example, the electronics industry uses phenolic composites for insulation and switches. Another common use is for terminal boards since non-conductivity is of utmost importance.

Manufacturers also use this composite material to produce bushings for off-road agricultural equipment. Another application is for making bearings.

These bearings are often used for paper and aluminum mill machinery. High pressure and chemical tolerance allow them to last longer than metal bearing.

Phenolic composites also make for excellent railcar parts. Common uses are for vertical liners and wear pads on passenger and freight trains. These phenolic components perform better thanks to high impact resistance and sliding lubrication.

Another use is industrial brake and clutch parts for overhead crane linings. You can even use phenolic laminate to create parts, such as center plates for passenger cars.

A Versatile Solution for Industries

The applications for phenolic laminates are endless. They are suitable for everything from aerospace to marine to electrical industries.

Also, phenolic laminates are great for producing parts of nearly all sizes—for example, everything from small terminal boards to big gears.

This composite material often outperforms metal and plastics. The main reason is that it is more resistant to pressure and shock. Another significant benefit is that phenolic laminates are less prone to corrosion.

We offer a variety of phenolic laminate products for many industries. Contact us today to request a free quote.

3 Things To Know About Friction Material

The U.S. manufacturing industry accounted for more than 10 percent of the nation’s gross domestic product in 2020. With a number like that, it’s easy to see how important it is to keep this industry running smoothly. A lesser-known but essential part of the manufacturing sector is friction materials.

While you may not have heard of these, friction material is essential in many manufacturing industries. Read on to learn three important things about these materials. 

1. What Is a Friction Material?

Systems with multiple moving parts in contact with one another use friction material. These materials are many different substances, including ceramics, paper, sintered metal, and metal alloys. The type of substance selected for friction material depends on several factors. These include:

  • Performance requirements
  • Temperature
  • Speed of the moving parts 

2. What Are the Uses for Friction Materials? 

The parts that friction materials are made into have specific functions within certain systems. Some of them include:

Friction Disc

Friction discs, also called clutch or brake disks, are part of the braking systems on cars and other machinery. The friction disc material attaches to a metal plate.

Clutch Facing

Clutch facings reduce the noise a clutch makes and allow for smoother transitions. These materials need to function under extended periods of stress and high heat. 

Brake Pads

The material used in brake pad production includes semi-metallic, non-asbestos organic, and ceramic materials. Regardless of the material, the operation is the same as the pads apply friction to the rotor. 

Brake Blocks

Brake blocks are a simple mechanism for stopping the motion of a wheel. Typically made of hard material or rubber, their simplicity allows for production from cheap low friction materials, such as rubber or resin. 

3. How Are Friction Materials Produced?

The first step in the production of friction material is the selection of raw materials. There are several substeps to be taken when selecting these materials, including whether you are producing low or high friction materials and if you are using organic, inorganic, or metallic materials. 

Once raw materials are selected, they are bonded with phenolic resin. This binding agent is used because of its ability to withstand heat and resist combustion and conduction. 

The raw materials are then blended. This process will determine the grade and cost of the finished product. The final step is the performing process, which shapes the friction materials into the final shapes to be used in operation. 

Are You Ready to Purchase Friction Materials? 

The type of material that you will need depends on multiple factors and the end use. Both the blending and performing process will determine the final product.

If you’re ready to begin the process of finding the perfect friction materials, contact us for all your needs

 

 

Different Types of Railcar Parts and How They Work

Although passenger and freight railcars have different purposes (transporting people versus transporting goods), they tend to share a lot of the same railcar parts

Sourcing and maintaining those parts is essential to any successful railcar operation. 

Let’s take a look at the various railcar parts. 

Railcar Parts: Mover Parts 

The mover parts of a railcar ensure that everything’s running smoothly as passengers or freight goes along the tracks. A brief list of railcar mover parts includes the following:

Couplers

Couplers connect the railway vehicles.

Rather than one standard kind of coupler, many different types of designs and materials are in use. These  range from mechanical couplers such as the buffer and chain or link and pin to semi-automatic couplers such as the Janney coupler.

Axles & Wheels

The rail axle and wheels work together to form a wheelset that keeps the railcar moving along the track. The wheels are typically made of steel and heat-treated to add extra strength. 

Most modern freight railcars have three or four wheelsets to support heavy freight loads. 

Cylinders

The cylinders help generate power for railcars. Made from steel, these are essential components for the diesel engine railcars that carry most of the world’s freight. 

Railcar Parts: Friction Wear Parts

Friction wear parts play a vital role in applying pressure to certain railcar parts to control speed. Some of the most common friction wear parts include:

Brake Shoes and Brake Pads

By pressing against the wheel tread, brake shoes and pads can slow or stop a wheel. Each railroad car has its own brakes to control its wheels. When working together, they bring the entire railcar to a stop. 

Typically, pads and shoes are made from cast iron and composite materials. 

Center Plates

Center plates are a kind of steel or forged steel plate that supports the car body on its trucks. Through this support, the center plates allow the trucks to turn. 

Railcar Parts: Rubber Parts 

Rubber parts have a variety of different functions for railcars. Let’s take a look at two common ones. 

Motor Mounts

Most railcars carry heavy loads that cause quite a lot of vibrations. Motor mounts help manage the effects of those vibrations by creating stability support. 

Rubber Seals & Gaskets 

Rubber seals are primarily used to prevent unwanted leaking from windows, doors, ceilings, engines, and more.

These work together with gaskets to prevent fuel, oil, and grease leakages. For example, nitrile gaskets help secure manway (or utility hole) nozzles on railroad tank cars. 

Railcar Parts With Kor-Pak

After correctly identifying the parts of a railcar, you can better hone in on the particular railcar parts that need adjustment or repair. You’ll want to find a railcar parts supplier with experience and expertise to ensure a quality job. 

Kor-Pak has provided rubber parts, friction wear parts, and other railcar parts to satisfy clients for many years. Contact us today to see how we can help.

Some Key Differences Between Iron and Steel

While some people may use the term iron and steel interchangeably, these metals couldn’t be more different. For one, steel is much more valuable. A ton of steel has a traded price of $4,600, while iron ore, on the same market index, sold at a mere $145. 

Also, the composition of the metals is different, and what products you’ll find in iron and steel are rarely interchangeable. 

In a historical sense, both metals have contributed to the evolution of civilization and culture. Without these materials and their development, people would be unable to create the significant modern edifices that grace our world.

In this article, we’ll discuss the difference between iron and steel and how the iron and steel industries have helped propel modern construction. 

What is Iron? 

First, it is important to emphasize that iron is an element and an essential mineral. It’s a ductile and lustrous metal with a silver appearance when unearthed. 

Iron’s symbol on the periodic table of elements is Fe, and the element has an atomic number of 26.

Although iron was used as one of humankind’s first tool materials, the element is relatively brittle in its raw form. Iron can be hammered into sheets or different forms.

Like many other mined metals, you can form iron into wire or sheets. However, one drawback to iron as a decorative or practical tool is that the element oxidizes when exposed to water or moist air. 

What is Steel?

Steel is an iron alloy, meaning that iron ore is smelted and mixed with other minerals to create different variations. Carbon steel and alloy steel are the two most common types.

Carbon steel is made up of nearly 1% carbon. It is the most common type of steel and represents about 80% of the steel manufactured today.

On the other hand, alloy steels include nickel, chromium, copper, silicon, and vanadium. The metal composition changes as the use of the steel differs, but all the alloys have some carbon and iron. 

What is Pig Iron?

Iron has other alloys besides steel. These include pig iron, wrought iron, and cast iron. These types of iron have carbon added to make them less soft and brittle.

Pig iron is a basic form of iron alloy used for simple structures. Cast iron has a high carbon infusion and is used for cookery or structural supports.

The last form of an iron alloy is wrought iron, which is softer than cast iron and easily molded when exposed to heat. 

Benefits of Steel 

With that stated, steel is still king in the products we make and buy. Because of this, you see steel alloys in everything from building materials to kitchenware.  

Because of steel’s flexibility, durability, and hardness, it is the perfect alloy for manufacturing and consumer goods. 

Iron and Steel Industrial Uses

Mining and manufacturing iron and steel are some of the longest-serving industrial professions. Yet, these industries continue to change and evolve.

To find out the latest techniques in iron and steel, talk to one of our experts on their expertise can help you. Contact us today to learn more.

How To Use an Incline Conveyor Properly

You need a streamlined system to maximize your production in whatever industry you work in. 

As your business grows, so will probably also the demand for your product, and if you can’t keep up with the requirements, your business will feel a financial loss. Fortunately, conveyors offer a solution to improve workplace performance. 

What if you don’t have much floor space, or your business is spread over multiple levels? This is where the incline conveyor comes in. With an incline conveyor, you meet demands with speed and efficiency, and at the same time, it takes up less space than a flat conveyor.

Do you know the proper handling techniques, though? Read on for advice on using an inclined belt conveyor. 

Which Inclined Conveyor?

It may seem obvious, but the first step is to ensure you opt for the conveyor you need. There are several considerations when making a large industrial purchase, like inclined belt conveyors.

Think about the space available to you and how steep you need your incline belt conveyor to be, which in turn impacts the type of belt you need. 

Incline Conveyor Safety

Incline conveyors have safety features, but you must be cautious when using one. Think of safety procedures regarding industrial machines. Don’t wear baggy clothing or hanging jewelry when using the belt. 

Also, it’s for inanimate materials only and should never be climbed on. Only qualified maintenance specialists should be on the incline belt even when the machine isn’t powered. 

Consider Product Load

Your product load determines what type of belt you need. Because your product will be on an incline, you need a sturdy belt with a strong grip. 

Incline conveyors operate between 0 and 45%, but your angle is another thing that depends on the product you are moving. 

Slippage Reductions

Product waste and reduced production are a consequence of slippage. Maybe your belt is soiled, maybe it’s the different spec of your product. Whatever the cause, you need to resolve it. 

If reducing your angle has no impact, you may need to look into buying a belt with a particular surface. 

Another option is to add a belt dressing. Then, spray it on to make the belt sticky.

Flights and Cleats

With a cleated belt, you can move materials 25% faster. In addition, your belt can be at a steeper angle while reducing rollback. A cleated conveyor is often used for fine materials.  

Reduce Carryback

When the material you’re transporting sticks to the conveyor belt, it can be costly, but carryback is an issue that occurs with all conveyors. It’s also a hazard when the product inevitably falls somewhere it shouldn’t be. 

The incline conveyor is no exception. This is where belt cleaners come in, scraping off large chunks and big portions of adhered material. 

Conveyor Belt Tracking

Conveyor belt tracking aligns your belt to follow the designed track. With belt slippage, you risk adding stress to the motor and wearing your belt, as well as reducing production. 

Quality Counts

Buying suitable parts for your incline conveyor belt saves you money in the long run. 

For example, clutch couplings are used in most forms of industry transmission equipment, so buying your clutch coupling at a low price and going for the cheapest will cause problems. Whether from system breakdown or reduced production, cheap parts cause a risk.  

Even seemingly small parts should be chosen with consideration. 

Your Inclined Belt Conveyor  

An inclined conveyor is beneficial and used in many industries. Food and beverage, mining, and agriculture are just a few. Ensure your incline conveyor works to the best of its ability with careful inspection and maintenance. 

Contact us if your company would benefit from buying quality parts for your industrial machines. 

 

How Hydraulic Clamps Are Used in Mining Applications

Hydraulic clamps are one of the most common industrial tools. Check out almost any workshop, and you’ll likely see dozens in various shapes and sizes.

So why has the mining industry used them on such a limited basis? Over the last decade, there has been a steady increase in the use of hydraulic clamps in the mining industry.

In 2020, the mining industry in the US produced more than $82.3 billion in minerals. As operations scale up, companies are starting to pay close attention to anything that improves efficiency and safety.

Read on as we look at some of the critical applications of hydraulic clamps in mining.

The Benefits of Hydraulic Clamps in Mining

When you’re dealing with something as critical as mining, one of the most important targets you can aim for is reliability. This reduces downtime and makes processes repeatable.

Hydraulic clamps allow you to position components precisely and hold them in place with the correct amount of force. This, in turn, makes sure your operation is as efficient as possible.

Another benefit of using hydraulic clamps in a mining application is a distinct reduction in shutdown time. By using the proper hydraulic clamping tool, you reduce cycle times and improve safety as well.

How Hydraulic Clamps Help Increase Productivity in Mining

The combination of reduced shutdown and faster cycle times goes a long way to improving productivity. Additionally, the cumulative effect of less maintenance and higher operator confidence boosts productivity even more.

Take, for example, the problem of supporting incline belts. Traditionally, belt components might be supported by manually applied bolts and portable clamps.

In the case of a series of incline belts that span a longer than average distance, the stress placed on the belts may be far too high for portable clamps and other traditional methods.

Installation of these belt systems is a complicated task. However, using a hydraulic clamp system can significantly reduce the time it takes to get up and running.

Maintenance of such high-tension belts may also present a high difficulty level. For example, an operator may need to install several bolts for each fixture and must precisely tighten down each.

However, the correct application of hydraulic clamps can drastically reduce this complexity. First, an operator must position the belt element and press a button to secure the fixture properly.

How Hydraulic Clamps Improve Safety in Mining

A repeatable and reliable process is vital in an environment with its fair share of safety concerns.

A sudden release of tension on an incline belt is not something any technician wants to experience. Because these belts are heavy and under immense load, any failure can be a critical safety event.

The mining applications of hydraulic clamps go a long way to reduce risk and directly impact operator safety. Using hydraulic clamps, a belt system can be easily disassembled in sections and inspected or replaced.

Choosing the Right Hydraulic Clamps

Any system is only as good as the quality of its components. Therefore, getting the correct hydraulic clamps for each situation is essential. In addition, choosing the proper application will reduce calibration, maintenance, and refitting delays.

Still have questions about the use of hydraulic clamps in mining? Are you ready to purchase? Contact us today, and we will ensure you get the perfect system and can confidently operate.