How to Maintain Your Hoist Motor

Everyone feels like a little kid when walking near a crane. They’re like metal dinosaurs that build things.

It’s easy to lose that sense of a hoists’ majesty and awesomeness if you work around them all the time. And this can also have the dastardly effect of making you forget to maintain your hoist.

If not properly maintained, a hoist can be deadly. Crane-Related injuries kill about 71 workers a year.

Let’s keep you and your crew safe. Today we’re going to talk about how to keep that hoist motor running smoothly. Let’s break it down.

1. Hoist Motor Corrosion

Depending on the outdoor environment you’re working in, the elements will likely attack your motor. Often corrosion is rust. There are other kinds of corrosion, batteries being the other culprit.

Rust happens when metals oxidize. Unless metal has a protective coating, moisture and oxygen will react with the metal and cause rust.

When installing your crane or hoist, be aware of what parts of the motor will contact the elements. If it’s directly in the rain, you’re more likely to see rust develop.

When not using your motor, cover it. While most of the components should have a protective layer, either epoxy paint or plastic covering, you want to minimize weather impact.

There could be hidden damage to your motor. Be sure to disassemble what you can and thoroughly inspect your motor.

2. Run the Equipment Even When Not in Use

Just like airplanes are made to fly and will break down if not in use, cranes will break down if not operated.

Why? The heat from the motor evaporates excess moisture.

This will prevent corrosion as well.

Assign this task to someone on your crew. Or schedule a quick rundown on the equipment daily.

Run the crane for a least fifteen minutes a day. This will allow the motor to warm up sufficiently to cause excess moisture to evaporate.

3. Keep the Chain Clean and Lubricated

Most cranes use a chain to hoist objects into the air. If the chain gets rusty or dirty, it won’t roll through the mechanism well. Any extra resistance in the chain setup will wear on the motor.

How often should you clean your chain and lubricate it? Only once a year.

You’ll need to disassemble the housing before you can clean the chain. In busy operations, this could mean a whole day of lost productivity. Be sure to schedule this cleaning during slow seasons.

4. Regularly Inspect the Entire Hoist

OSHA requires certain standards when inspecting overhead hoists and gantry cranes on job sites. Most of these regulations touch on safety rather than merely crane function.

But you or your hoist operator should perform a quick visual inspection every time they use the equipment. This will ensure that any apparent corrosion, misalignments, and other problems get fixed early and often.

A full and in-depth inspection should happen once a month.

Respect Your Crane Hoist

Cranes are incredible machines. And if you don’t respect the machine, accidents are waiting to happen.

If you need someone to give a thorough hoist motor inspection, contact us.

How To Tell Its Time For Crane Brakes Maintenance

An accident on a work site is the worst thing that can happen. Not only can it be detrimental to a worker and their family, but it can lower morale for other employees. It can also be costly for the company.

Construction sites can be dangerous. 5,147 workers were killed while on-site in 2017.

There is an average of 42 worker deaths per year due to the use of cranes alone.

That’s why it’s essential to keep up with your crane brakes maintenance. Keep reading to find out how to tell if it’s time for you to check your crane brakes and why it’s important to perform routine checks.

What Are Crane Brakes?

Believe it or not, many components make up the different brakes used in cranes.

Good brakes used for trolly and bridge motions of a motor crane depend on what you’re looking for. DC Thruster Drum brakes, for example, have gained popularity due to their sliding torque tube and lowering valve.

Dual Caliper Disc Brakes have proven to be the safest option as they provide a balanced load.

Hoist brakes are indispensable to the safety and functionality of a crane. Magnetic disc, thruster, or drum brakes are used on the high-speed side of the crane for service duty. Caliper Disc brakes are used on the low-speed side of the crane and are used in the event of an emergency to stop a load from falling or the transmission from blowing.

What Part Should I Replace?

There are many components to a crane brake such as:

  • anchor plates
  • pads
  • shoes
  • friction discs
  • coils

For brakes to function correctly and safely, it might need something as simple as new brake pads.

How Can I Tell If It Needs Repair?

Do you hear a squeaking or screeching sound while you maneuver your crane? This means it’s time to check your brakes and some parts probably need to be replaced.

Are things looking rusty? Aside from equipment use, it’s the wear and tear that comes from weather that causes machinery to break down over time. If there’s any sign of rust or noticeable wear, your brakes might need repair.

Are movements not as smooth? If you notice that your crane’s movements aren’t as smooth as they were before, your pads might need to be replaced.

What happens when you do a brakes testing? Perform a brakes test regularly to make sure components are working as they should be.

What Can I Do to Prevent Repair?

Don’t overload your crane. Overloading it could cause parts to break, and will compromise the safety of your workers. While it might be tempting to save time by overloading in the short run, it’s not worth the costs and incidents that could occur as a result in the long run.

Carry out regular inspections of your crane to avoid any failure. And make sure that the crane you purchase or use is specific to the type of job you plan to use it for. If you only need to move something up and down, a hoist motor is all you’ll need. But for heavy lifting in all directions, finding the right crane is essential to the success and safety of your job.

Click here for more tips on how to avoid a massive crane failure.

The Importance of Crane Brakes Maintenance

You don’t want to wait until you hear a loud screech to check the brakes of your crane.

For maximum efficiency of your equipment and the safety of workers, it’s a necessity to keep up with crane brakes maintenance.

If you need a part, we can get it for you in an emergency. We can also answer any questions you may have about crane brake maintenance and your rights as an owner.

Contact us today to stay informed, stay safe, and get anything you need for your equipment.

Hydraulic and Metal: Picking and Maintaining Different Types of Clamps

Hydraulics have been a part of manufacturing since the 1880s when a hydraulic system was first used to drive machinery in London factories.

Hydraulic systems can apply constant and highly controllable pressure almost instantly. This makes hydraulics ideal for clamping and workholding purposes.

There are numerous types of hydraulic clamps. Each has its own benefits in particular workholding situations.

So read on as we take a look at some of the most popular types of clamps and how to keep them maintained.

Cylinder Clamps

Cylinder clamps look exactly as you would expect.

The piston is located within a cylindrical housing. The body of the cylindrical housing will often be threaded, making it easy fix in place. The hydraulics drive the piston against the work, applying a constant pressure to keep it in place.

Cylinder clamps are one of the most common types of hydraulic clamps. They come in two basic forms.

Single Acting

Single acting cylinder clamps can only drive the piston in one direction.

This piston is driven into place and held there with constant pressure. But it cannot be withdrawn again using hydraulic power. The piston will often retract with the use of a spring, which makes it slower to react. It also means less control.

These clamps are ideal for situations where the speed of releasing the clamp is unimportant.

Double Acting

Double acting cylinder clamps use hydraulic power to drive the piston both into place and back into the cylinder.

This offers far more precise control during the unclamping cycle. It is also vital when timing sequences are critical to the manufacturing process.

Double acting cylinder clamps are far more complex than single acting clamps. They are ideal for situations where you need more control over the speed and timing of the release.

Swing Clamps

Swing clamps operate by employing two separate motions.

First, the clamping arm will rotate through 90 degrees to position itself in the correct place. It will then clamp down on the work, holding it in location. When released, the clamp disengages and then swings back into its start position.

This leaves the work area completely free for new components to be loaded and unloaded. Swing clamps are ideal for situations where work is continually inserted and removed.

Maintaining Your Hydraulic Clamps

The key to maintaining your clamps is to act before there is an issue.

Preventative maintenance is essential. Keep your fixtures free from coolant when not in use and store them in a cool and dry environment. Be sure to flush your systems at least once per year as well as running an annual maintenance checkup.  

Are You Looking to Buy These Types of Clamps?

If you’re looking for these types of clamps or other hydraulic clamping system components, then you’re in the right place.

We offer a wide range of hydraulic clamps from leading manufacturers such as Enerpac, Vektek, and Monroe. We also offer a wide range of other industrial products such as brakes and clutches, industrial couplings, and torque limiters.

If you have any questions about the products that we offer or would like to discuss your machining and fabrication requirements, then please don’t hesitate to get in touch.

Your Ultimate Motor Coupling Purchasing Guide

While there’s no set standard for how long any piece of equipment lasts, one of the best ways to ensure you get the most life out of anything is maintenance.

When you replace broken or worn components of your motor, like your motor coupling, you’ll find that your whole system lasts longer. If you’re willing to put in the work for replacing these components, your whole system will reward you with efficiency.

Here is what you need to know when you’re looking to buy a new coupling for your motor.

Figure Out The Size

When you’re looking to replace a motor coupling, especially one that worked well for some years, you need to make sure you order the right replacement. When looking to get the OEM part or the closest one to it, you need to figure out how to identify it to reorder it. This will help you maintain the life of your motor.

You’ll need to find out the horsepower of the motor and the RPM at the point of the coupling to identify the size. There is a specific shaft, and keyway size you need to make sure matches the old one.

Then check the shaft separation, also known as BSE, which is the distance between your two shaft ends. If you also know the type of driven equipment that you’re using it with, you’re all set.

How Are You Using It

Along with the size, you need to figure out the application factors which help you decide on a coupling. Not all couplings are created equally, even ones that are made to fit a specific type of motor.

You’ll need to know the operating temperature that you’re putting it under and any chemical exposure that you can expect. There are run cycle types, whether continuous or start-stop motors that make a difference. You’ll even need to account for space available for your couplings.

Figure out the misalignment handling requirements, and you’ll know which to get. There are angular, parallel, and axial misalignment possibilities and your coupling will be different depending on which one you have to account for.

Beware of Misalignment

When you’re looking at the rating for the coupling that you’re replacing, there is a number that relates to misalignment. Each coupling type will tell you how much is the maximum allowable misalignment you can have. If your coupling is set to be aligned at the maximum permissible misalignment, you need another coupling.

If you go beyond the allowance, then you’re going to see a severe drop in the life of your coupling. While you can’t precisely calculate the life of a coupling, the factor of misalignment is going to make a massive difference.

A New Motor Coupling Will Get You Back on Track

When your system has been giving you trouble, a motor coupling could be the only thing standing in the way of reaching peak efficiency. So long as you find the component that fits your system, you’ll be able to have a motor that works as if it were brand new.

If you need help in servicing and maintaining all of your equipment, check out our latest guide.

What’s Right for Your Load? AC Motor vs. DC Motor

Given that 70% of the time that we put into work gets wasted, a lot of that time is wasted because of the wrong tools. If you’re deciding on an AC motor vs. a DC motor, then you need to understand their applications better. One is better for one type of project while the other might be what you need for a project you haven’t considered using it for.

Here is everything you need to know about how motors impact your load.

Understanding Load Needs

When you’re operating equipment with a motor, it doesn’t always have a load attached. Sometimes the motor itself is doing all the work while the equipment is moved around by an operator.

When a motor is bearing a load or dragging an object around, it’s dealing with external resistance that takes mechanical energy. If you calculate how much real power your equipment has, the raw mechanical energy is going to be dragged down by your load. Some internal factors change how a motor works, but much of the change comes from external factors.

When a shaft rotates freely, then the only resistance you have to worry about is from internal factors.

When To Use AC motors

Alternating current motors don’t have a lot of the control that direct current motors have. However, with a frequency converter, an AC motor and DC motor vary, far less.

If you’re working on a project that doesn’t require a lot of stable motion in your motor, then you should use an AC motor. If fixed speed isn’t an absolute must, then an AC motor is fine. The only thing is that if you need to use your motor at a deficient speed, AC needs a certain frequency just to get started and could fluctuate as well.

For the best deal when it comes to performance and torque output, however, AC motors give you the best of both worlds. You’ll have a powerful and strong performance that doesn’t struggle with the resistance of loads. You could end up remaining at a steady pace in spite of a load.

When To Use DC Motors

Direct current motors are good for a lot of applications that AC motors aren’t prepared for. When you need more torque while starting your motor, you can get that high starting power with DC. They overcome the initial inertia that a load puts on a motor when it’s just getting started.

While you might require some versatility, AC won’t always cut it. You can modify DC motors much easier in both high power and low power applications.

When you need to deal with a project where your load is your priority, not precision, DC motors come in handy.

The AC Motor Vs. DC Motor Debate is Easy

When it comes to deciding between an AC motor vs. a DC motor, it all comes down to your load. Whatever is better for your load, that’s the motor to choose.

To keep your motors in good shape, follow our guide for equipment maintenance.

5 Things to Do Before for Your Next OSHA Crane Inspection

There were over 5,000 fatal work-related injuries in 2017 in the United States.

That’s a startling statistic.

OSHA performs inspections to ensure that equipment and businesses are following safety regulations to prevent injuries.

Having a crane inspection can be a stressful experience. You want to be sure that you’re adequately prepared so that you can pass with flying colors. Check out these five things you must do before your next OSHA crane inspection.

1. Be Prepared  

You should always be prepared for an unexpected OSHA inspection. OSHA inspections can happen virtually anytime. It’s rare that you get a heads up before they show up.

When you’re already prepared and know what to expect, it will help your odds of passing and relieve stress. You should be educated on OSHA crane inspection requirements so that you know what will be looked at during the visit.

2. Mind Your Manners

You should always be polite and treat the OSHA inspector with respect when they arrive for a crane test. Professionally conduct yourself and avoid oversharing. Treat them with kindness so that they can return the gesture.

If, however, the visit becomes tense or the inspector becomes confrontational, keep your cool. You will also want to call the OSHA office and let them know of the situation.

3. Give Responsibilities

Prior to the OSHA visit, you should already know who within the company will meet with the investigator. This responsibility should already be set in place. This person should be aware of all proper procedures and know where all important documentation is located.

4. Keep Documentation and Records

Speaking of documentation, you need to be sure that you keep good records so that you’re prepared for inspections. You should have documentation and records of all the training performed by all employees. All these documents should be in a safe place along with safety policies, insurance documents, performed maintenance, and third-party audits.

Along with keeping proper documentation of paperwork, you may also want to keep records of the inspection itself. While you’re with the inspector during the visit, consider writing down the things that he or she observes.

5. Understand Your Rights

It’s important to know that you and your employees have rights when it comes to an OSHA inspection. Employees are under no obligation to speak to the inspector. If an employee chooses to talk to an OSHA inspector, the conversation should not be recorded, and the employee is not required to sign a witness statement.

Pass Your OSHA Crane Inspection

When an inspector shows up for an OSHA crane inspection, don’t panic. Follow these tips and understand the OSHA overhead crane regulations so that you’re prepared to pass the inspection with flying colors.

Do you have questions regarding overhead crane inspections and crane load tests? Contact us today, and we will provide you with the answers you’re looking for.

Stopping Power: Is Your Caliper Brake Seized or Sticking?

Heavy machinery causes up to 63 percent of heavy equipment operator deaths.  Sometimes the causes are easily preventable, sometimes freak accidents happen, and sometimes they’re caused by things we commonly overlook.

Today, we want to talk about the commonly overlooked. Too many operators take their braking system for granted. For those using pad-driven systems, the humble caliper often gets overlooked.

When caliper systems become seized or stuck, operators and those on the construction site are all at risk. Seized or stuck calipers drastically, and sometimes all together, reduce stopping power.

So to help keep you safe, we’re breaking down how to tell if your caliper brake is seized or stuck.

What are Calipers and How Do They Work?

Caliper brakes work in tandem with your brake pads to engage the rotors and stop your machine. Think of a brake system in three parts. First, you have the brake pads. They’re small, abrasive components that help stop the machine.

Next, you have the rotors. The rotors are circular metal components that the brake pads rub against to create friction thus stopping the machine. The calipers are the component that forces the brake pads against the rotors.

Your brake fluid creates hydraulic pressure within the brake caliper that then causes the pads to pinch against the rotor. The resulting friction stops your machine.

When you calipers seize or stick, they can no longer push the brake pads against the rotors. When the pads can’t rub against the rotors, your machine can’t stop.

What Causes them to Seize or Stick?

To understand why calipers seize or stick we have to know how calipers push the brake pads against the rotors. When you apply the brake pedal, hydraulic fluid builds pressure in the caliper which forces a piston to pinch the caliper together and engage the brake pads on the rotors.

Calipers frequently become stuck when that piston no longer moves. This usually happens because of corrosion. When your machine sits for too long, the piston rusts and the caliper becomes stuck.

Lack of brake fluid is another cause. If you’re low on brake fluid, the hydraulic pressure won’t build, and the piston won’t cause the caliper to pinch shut.

Symptoms of a Stuck or Seized Caliper

Stuck or seized calipers make driving impossible. Partially stuck or seized calipers make driving extremely dangerous. Depending on the issue, you’ll know that you have a problem based on how your machine reacts.

Calipers stuck closed will make a very loud grinding noise. You might also feel a “flimsy” brake pedal that depresses without much effort. Machines without any brake fluid won’t stop at all. The brake pedal will have zero resistance.

Repair or Replace?

Repairing a caliper is the cheapest (upfront) solution to your woes. Someone with a little bit of mechanical know-how can probably fix their own caliper. That said, like any mechanical part, calipers wear down over time. Every time your caliper gets stuck its lifespan significantly decreases.

Replacing your caliper will cost more upfront but could save you money in the long run. While repair is technically free, it does cost your time. And if you take it to the mechanic, you’re looking at a costly bill. If you replace your caliper, you’re ensuring that the piston won’t stick ever again.

Buying a Caliper Brake

Buying a new caliper brake is fairly daunting. Your local dealer will want to upsell you; the mechanic probably wants to upsell you as well, while third-party manufacturers don’t offer high-quality products.

That’s where we come into play. We offer top-quality industrial calipers for a variety of different applications. If you need help navigating our catalog, feel free to contact us. We’ll help ensure your machines are running smoothly.

Keep Your Jib Crane Running with Modern Upgrades

As the construction industry has bounced back from the recession of a decade ago, construction hiring has shown no sign of slowing.

Even with systems that are more efficient than ever before, there’s no shortage of people needed to work and supervise them. To stay competitive, you need to modernize every element of your worksite, from better-trained staff to replacing every old component on your jib crane.

To keep your jib crane moving faster and more efficiently, make some of these modern upgrades.

Sometimes You’re Forced to Modernize

If you’ve been inspected recently, you might have seen issues with your jib’s equipment. Whether or not your crane passed the OSHA inspection is irrelevant if you noticed problems that need to be fixed. Having a regular inspection is essential for things to move safely and efficiently, but you can also uncover inefficiencies in your hoist equipment.

If you want to extend the life of your crane and keep from dealing with costly downtime, look for wear and tear on components that do the most work. If you notice your reels aren’t working the way you need to, look into some modern motor-driven reels to keep things moving.

Even hoist brake technology could help you if you notice your brakes aren’t in the shape you want them to be in. With a new set of hoist brakes, you get more accurate movement and help ensure safety on your site.

Sometimes Old Parts Aren’t Available

If your crane is getting older, you’ll notice it’s gotten harder to find the components that you need to keep it running. If you’re only able to find used components to replace the OEM parts on your crane, you should consider upgrading. You’ll work more efficiently and have parts you can depend on with an upgrade

Bumpers and buffers are one type of component that can be hard to find. If your crane hasn’t been manufactured for a few decades, finding unused bumpers and buffers is going to be a considerable challenge. When you buy new buffers and bumpers made with modern materials, you get more durability from components that are much easier to track down.

Sometimes Safety Means Everything

Control systems for cranes are changing rapidly. Even older cranes are now being outfitted with remote-controlled systems. The operator cab can be removed altogether in some cases.

Rather than putting personnel at risk on the floor of a massive worksite, having a crane that works via radio control saves lives. You can maneuver a crane hook all over a site without worrying about safety. You’ll move and operate cranes with great ease, never once putting anyone at risk.

A Jib Crane Needs Constant Work

Even though it costs a fortune to buy a jib crane, you need to maintain it consistently to get the most out of it. If you want to ensure that you have equipment that lasts as long as you need it, replace components with better elements if possible.

For a maintenance checklist to use on your crane, check out our guide.

Fastest Way to Get Oil Rig Parts Now

Oil rigging remains a crucial means to extract natural gas and petroleum far beneath the earth’s floor. In 2018, there were well over 900 onshore oil rigs in the US alone. In this same year, there were over 180 offshore ocean oil rigs worldwide, working hard to process oil through drilled wells.

With so much commerce at stake, it’s important to find replacement parts fast. If you’re a rig’s Installation Manager, you need a purchasing process that helps you reach the right oil rig parts when you need them most.

Read further to find out how to shape a procurement process and find the parts that are right for you.

Rig Industry Basics

Oilfield parts companies sell wares to many different kinds of drilling rigs. These rigs are classified as either offshore or onshore rigs.

Offshore and onshore rigs share some similarities. They both use disc braking systems to control draw works. They both have projecting girders raised with hoisting systems.

Onshore models use cable tool drilling methods to raise and drop a metal bit into the ground. This metal bit penetrates the earth’s service.

Offshore rigs are either fixed or floating platforms. These offshore platforms fall within the following general formats:

Semi-submersible Rig

This rig model is a floating deck reinforced by pontoons and mooring lines. Semi-submersible rigs can operate in water depths over 12,000 square feet.

Drillship

Drillships are used at remote locations and operate and water depths around 10,000 feet. These “floaters” stay put with anchors and computerized positioning devices.

Jack-Up Drilling Rig

These rigs operate in shallower depths up to 500 feet. The Jack-up rig power system lower’s support legs to the ocean floor and raises the platform above the water’s surface.

Barge Rig

These offshore vessels are towed to their location where their hull is filled with water. These rigs work best in shallow areas and can drill in depths between 10 and 20 feet.

Oil Rig Parts Procurement and Planning

With so many different rig styles in operation today, it’s best to find an oil rig parts supplier that has the correct inventory to meet your specific needs. For example, if you’re operating a Semi-submersible Rig, you’ll need a steady supply of position-keeping propellers for quick repairs.

It’s also important to find the right company that can provide maintenance or service on surface or down-hole equipment. These companies not only sell you your oil rig parts but are also capable of making the repairs or workover that your rig might need.

The best way to make sure the right oil rig parts are available when you need them is to create a maintenance replacement plan. Maintenance replacement plans will allow you to have a stockpile of extra parts and limit your waiting for parts to arrive.

Your maintenance repair plan should also address the different power systems you have in place for your rigging option. These systems help protect your rigs ailing components until the scheduled repairs or replacements are necessary.

Next Steps

Create your oil rig maintenance replacement plan today. Regular attention to these factors can help extend your machinery’s lifespan.

Perform regular maintenance reviews on your hoist or circulation systems. These power systems will keep your rig alive until replacement parts arrive.

Keep an extra supply of augers and hydraulic hoses on sight. Without them, your production could come to a grinding (and expensive) halt.

Don’t forget to check out our website for more information on resourcing oil rig parts.  It’s our job to help you in all ways possible.

How to Avoid a Massive Crane Failure

Cranes have many uses in the industrial world. They help to make light work of heavy-lifting tasks that would take time and a lot of workforces to complete.

Although no crane user wants to experience crane failure, it may happen at their workplace. This may result in downtime, but also cause injury and even death.

From 2011 to 2015, 220 total crane-related deaths occurred, according to the Census of Fatal Occupational Injuries (CFOI). As a crane user, you should take all the necessary steps to reduce this number.

Before starting any crane operations at your workplace, take the following precautionary measures.

1. Carry out Inspections to Avoid Crane Failure

Consider implementing a crane maintenance and inspection program.

The program will allow you to document the inspection results and use them to solve future problems. Inspect the machine by abiding by the manufacturer’s regulation.

Hire a certified crane inspector to conduct this activity.

2. Enact Policies on the Crane’s Operations

You can enact company policies to help prevent overhead crane accidents. The guidelines may offer insights on the integrity of the crane and worksite hazards.

Ask your workers to stick to a specific load rating and capacity of the equipment they’re using.

Take disciplinary action against employees that breach workplace rules.

Install collision-avoidance gadgets or circuitry on your cranes to implement your safety regulations.

Other devices to install include weigh scales, overload limiting gadgets, stop-limit and slow-down switches. Make every operator accountable for using these devices.

3. Train Your Personnel in Crane Maintenance and Operation Safety

Your company’s technicians must be knowledgeable about the safe practices for operating cranes. Their expertise should lie in troubleshooting, maintaining and repairing crane parts. Train them on worksite conduct and job-site safety.

Mandate your employees to use hand signals, warning lights, and radios to communicate crane failure. Ensure that they have the contacts of the technicians needed to initiate repairs.

They should also stay updated on the CMAA guidelines and other safety policies.

4. Grease the Bearings of the Sheaves Regularly

Lubricate the bearings of the crane’s sheaves to prevent crane noise.

Greasing helps prevent wear and tear caused by friction. Though this exercise is tiring and time-consuming to execute, it enables you to save the money needed for sheave repairs.

Your technicians can use rigging to access the sheaves and grease them.

5. Get a Crane Suited for a Specific Use

Cranes come in various forms, which each style tailored to a particular application. The smallest ones facilitate lifting operations inside workshops. You can find tall tower cranes used to construct high-rise buildings.

Ensure that your company the right crane to prevent injuries, damage or crane failure.

Don’t Let Crane Failure Degrade Your Company’s Productivity

Mitigate crane failure risks by carrying out routine maintenance and inspections. Seek out a competent person to identify mechanical problems in parts such as the crane motor. Check for damaged parts, worn-out wiring/ropes, fluid leakages, and cracks.

We perform modernizations and upgrades on crane equipment. We can also perform repair work on the equipment. We stock a range of crane spare parts to make the repair process smooth and fast.

Contact us in case you can’t find the part, product or service you need or to request a quote.