What to Look For When Purchasing Industrial Parts

In most manufacturing companies, buying industrial parts is an essential task in running daily operations. However, it can be expensive, so it is crucial to have the proper procurement and purchasing process.

You want to buy high-quality equipment that is the best fit for the job at a reasonable price.

Here are things to consider before committing your budget.

Price Negotiation

When considering where to get industrial parts, you should compare quotes from several different suppliers. You may be able to negotiate the price down if a supplier is prepared to beat a competitor’s offer. You might also be able to negotiate a discount for buying parts in bulk.

Decide whether you will buy used or new industrial parts. If you’re on a tight budget, buying used equipment could be an option.

Keep in mind that the lowest price may not be the best option if it compromises on quality. On the other hand, more expensive equipment may cost less in repairs over the long run and offer higher precision that minimizes costly mistakes.

Workforce Engagement

Determine how much work your employees will need to do to manage different types of equipment. Fully automated systems require a smaller workforce, freeing up the budget for other areas of the business. You should ensure you know how many employees you will need to install the parts and keep the equipment running.

Consumption Needs

When you buy industrial parts, you need to know how much power they will consume and the type of connection they require. If the equipment requires large amounts of energy, you may need to install a commercial electricity connection.

You should be aware of how much energy the equipment will consume and whether different industrial parts have different consumption patterns. That will help you to plan the energy costs involved in your operations.


You should make sure you understand the maintenance requirements for the parts you purchase and whether they are suitable for your equipment. For example, when buying crane parts, the safety of the equipment is of the utmost importance to prevent accidents and comply with industry standards.

Find out whether you will need to install equipment such as ventilation to get the best out of the machinery. Will you be able to do the maintenance work yourself, or will you need to arrange and pay for regular servicing? Some suppliers offer tailored contracts for parts and maintenance as part of their aftermarket services.

Warranty and Insurance Coverage

Given the expense of buying industrial parts, it is essential to have warranty coverage. Check the details of the supplier’s warranty and what it covers. You may opt to buy an extended warranty for extra coverage.

You might also need to buy an insurance policy for construction equipment to cover damage caused by a natural disaster or fire.

Get Advice on Selecting the Best Industrial Parts

Buying industrial parts for your business is an important task that requires extensive research. You need to make sure the parts are a good fit for your equipment, are straightforward to install and maintain, and come with the right coverage in case something goes wrong.

Kor-Pak can help. Contact our team for a consultation on selecting the best industrial parts for your equipment. We can help you achieve the most efficient production, avoiding costly downtime.

5 of the Most Important Crane Safety Tips

A crane is a powerful piece of machinery capable of carrying out many important and impressive tasks. However, when misused, it is also capable of causing catastrophic damage to crane operators, site workers, and even the public. Unfortunately, injuries and fatalities involving cranes are far from unheard of.

For this reason, following proper crane safety practices is of the utmost importance. Below, we’ll run through some of the most important to remember. Then, read on for five of the most crucial pieces of crane safety advice.

1. Make Sure All Crane Operators Are Properly Qualified

It should go without saying, but one of the most fundamental pieces of crane safety advice is always to ensure that any crane operators are qualified and have received the proper training. This is important not only for safety but also for compliance. The Occupational Safety and Health Administration (OSHA) has regulations in place stipulating that only trained and certified individuals may operate cranes on job sites.

2. Read Operating Manuals Thoroughly

Even when a crane operator has received the necessary training to operate a train, it is still imperative that they always read the operator’s manual before beginning to work with a new type of crane. Cranes can differ vastly from one another in terms of load capacities and even operator controls. To ensure the safe operation of an industrial crane, operators must read and understand the operating manual.

3. Always Stabilize Cranes Before Rigging

It’s vitally essential to stabilize a mobile crane before any rigging begins. This will prevent the crane from tipping over and potentially causing an accident. Stabilization can be achieved through outriggers or other stabilizing features and should be carried out according to the instructions of each crane.

4. Perform Regular Inspections

A lot of crane safety, in the end, comes down to the person operating the crane; however, you must maintain the crane properly. To ensure cranes continue to function safely, you should carry out regular inspections to make sure everything is working as it should be.

5. Learn to Use Proper Communication and Hand Signals

One of the most key elements on any site—particularly for a crane operator—is clear communication. Good communication can be the difference between a successful task and a fatal mistake. 

There are standardized hand signals and communication protocols that facilitate the safe operation of cranes. It is essential that everyone on site knows what these are and that the crane operator uses them each time taking new action.

Always Follow Crane Safety Guidelines

To maintain a productive, compliant, and safe site, it is crucial to always make sure that proper crane safety guidelines are being followed. If you’ve got questions about cranes or crane safety, or you’d like to book an inspection, get in touch with us today. We have the knowledge and experience to make sure your site keeps running as it should.

A Brief Guide on Crane Hoists

When there’s work to be done, an overhead crane does the heavy lifting. Bridge, gantry, monorail, and jib cranes all share something in common — a reliance on crane hoists.

Engineers, operators, and purchasing agents who work with crane equipment have probably heard of hoists. But what exactly are crane hoists, and what types of crane hoists are there?

What Does a Crane Hoist Do?

A hoist is easily the most critical part of an overhead crane. While steel beams and other structures provide stability to cranes, the hoist is the only part that performs the lowering and lifting of loads. 

There are two main parts to hoists: the power source and the lifting medium. The power source options include pressurized air or electric power.

Hand-powered hoists can lift lighter loads. The lifting medium is typically a chain or wire.

Chain Hoists

Chain hoists rely on metal chains to lift loads. The chain often runs through sprockets. As a result, many crane operators consider chain hoists to be relatively low-maintenance and more cost-effective than wire ropes.

Benefits of using a chain-based hoist include:

  • The option of adjusting the height by changing the chain
  • A more compact size that doesn’t require a drum
  • Durability
  • Portability
  • Capacity (up to several tons of lifting power)

Chain hoists are more limited on lifting speed than wire hoists, and they may not be reliable at heights greater than 20 feet. Still, many crane operators consider chain ropes an economical and reliable lifting mechanism for many jobs. 

Wire Hoist

As the name suggests, wire hoists rely on steel wires to lift loads. Operators release the wire from a grooved drum. The hoists can be powered pneumatically, electrically, or manually. 

Wire hoists have several advantages over chain alternatives. Wires allow loads to be lifted more quickly. Other advantages include:

  • The ability to lift loads to higher heights than chain hoists
  • Severe duty classification options (class D, E, and F)
  • Smooth and quieter operations
  • The ability to lift 10 tons and above 

For heavy jobs, a wire hoist will lift heavier jobs to greater heights than chain hoists. Wire hoists require more space than most chain hoists, though the wire options are generally more expensive to buy. Crane maintenance is often similarly more costly. 

Which Option Is Right for Me?

A chain hoist is cost-effective and highly durable. If your company plans on taking projects that require higher and heavier lifting, an investment in a wire hoist may save you from having to upgrade your crane system. To view all our crane-related products, visit our product page

Hoist Suspension Systems

Both chain and wire hoists can be mounted in several ways. A hook-mounted system uses a hook that is built into the top of a hoist. An operator attaches the hook to the top of a crane system.

A lug-mounted system can glide using rollers. Trolly-mounted systems use a motorized engine to move the hoist latterly slowly. 

Upgrade Your Overhead Crane Hoist Today

Picking the right crane hoist for your lifting needs is one of the most critical decisions overhead crane operators and engineers can make. 

We’ll help you find what you need at a competitive price. So contact us today to let one of our experts equip you with a suitable hoist for your job. 

5 Signs Your Construction Equipment Needs Repairs

Construction equipment can’t last forever, and sooner or later, you’ll need to repair it.

But how do you know when you need to repair equipment? We wanted to help by giving you some signs that your construction equipment might need some repairs.

Keep reading to learn the five common signs you may have failing equipment:

1. Visual Inspection

If you notice any of the following visual signs, get your construction equipment checked by a repair service:

  • The construction equipment is leaking hydraulic fluid (from the lines, valves, or hoses)
  • The construction equipment has hydraulic fluid dripping from it
  • Minerals have built up in your construction equipment’s lubricating oil

A professional service can check for these problems. They will inspect construction equipment that runs thousands of hours each year. If you take care of construction equipment repairs right away, you’ll save money in the long run on maintenance costs.

2. Abnormal Noise

If there is a strange noise coming from construction equipment, make sure to get it looked over by a repair service.

Some construction equipment noises include a grinding noise and a squealing noise. A repair service can check construction equipment for these problems by performing a “sound test.” But, first, they’ll need to shut down the construction equipment to avoid any abnormal sounds.

If you’re in doubt about construction equipment, have it checked out before damages cost more than repairs. There are enough costs in the construction industry — excessive wear does not need to be one.

3. Excessive Vibration

If your construction equipment vibrates too much, someone should check it right away before it breaks, and it costs more money to fix.

This is especially true if the vibration was not an issue with construction equipment before the maintenance work (for example, when there was a tire change). In this case, vibrations may be a sign of construction equipment problems.

4. Mechanical Problems

If construction equipment is trying to move but can’t, then you might have mechanical problems.

For example, construction equipment may be unable to move because of a problem with its tires or wheels. If construction equipment starts to develop mechanical problems, get them checked out by a repair service before the damage worsens and construction equipment costs rise.

Leaving mechanical problems unchecked can cause construction delays. It can also mean construction equipment will break down more often. Intervening will save construction management time and money.

5. Temperature Changes

If you notice any temperature changes coming from inside or outside your construction equipment, this could indicate a problem, and you should immediately take action.

Too many temperature changes can affect the properties of materials and the efficiency of construction equipment. This could make it dangerous or even ruin a construction project if the equipment doesn’t work right.

Temperature changes in construction equipment can mean that fuel burns quicker. A repair service can help you to prevent more damage from happening.

Fix Your Construction Equipment Today

Now that you know the signs to look out for, you can determine if your construction equipment needs repairs.

If construction equipment is starting to show signs of wear or problems, don’t wait! Contact a construction repair service right away.

Request a quote by contacting us today. 

Industrial Brakes: Purpose and Applications

We often associate braking systems with everyday cars and commercial vehicles moving along the highway when talking about braking systems. So it makes sense that industrial brakes are brakes used for heavy equipment such as construction excavators, backhoes, or skid steers. Yet industrial brakes also are found on processing equipment, medical imaging equipment, and many other applications. Understanding the purpose of these components allows you to set up, install, and maintain the industrial brake for your machinery.

Purpose of Industrial Brakes

Industrial brakes are designed to slow or stop the mechanical movement of components or systems. This process is done by using friction as the braking device will absorb the kinetic energy. There are other brakes available based on their purpose and how they may slow or stop mechanical movement. These components are called holding brakes and dynamic brakes.

Holding Brakes: Holding brakes are used to keep a component or machine in a stopped position until some other action is taken to release the hold.

Dynamic Brakes: Dynamic brakes will apply friction to bring a running mechanical component to a complete stop as the rotating load winds down.

Equipment or components may require a holding brake, a dynamic brake, or a combination of the two. Drum brakes and disc brakes are considered dynamic brakes. Disc brakes are appropriate for applications that need high torque but do not have space limitations for the brakes. Meanwhile, drum brakes are used for applications that need lower torque and may have space limitations. Drum brakes may use an electrohydraulic thruster, electromagnetic solenoid, hydraulic release, or pneumatic release for their operations.

Types of Industrial Brakes

Industrial brakes may also be further broken down by their functions or by how they are powered. These types include:

  • Spring-loaded brakes: Brakes that slow-moving loads and will hold static loads in place only when the release mechanism is turned off.
  • Hydraulic release brakes: A type of spring-loaded brake that provides adjustable torque by using hydraulic energy.
  • Fail-safe brakes: Fail-safe brakes shut down the application’s movement immediately due to issues or power loss.

Applications for Industrial Brakes

Many industries have applications that use industrial brakes. Typical industries include manufacturing, warehousing, energy, oil & gas, medical, food processing, steel mills, and many others. Some applications include:

  • general industrial equipment
  • mining winches
  • conveyor belts
  • overhead cranes
  • steel rolling systems
  • wind turbines

Industrial Braking Systems for Your Operations

Designing equipment systems requires knowing how the braking system will impact mechanisms down the line. Relying on a company that not only supplies high-quality brakes but also provides servicing and parts allows you to come up with the best design approaches that better align with your operational needs. In addition, you can stay competitive in your industry if the components and systems can be upgraded to match the growth of your operations, as you will have efficient and scalable processes.

If you require brakes for your applications or wish to inquire about industrial brakes suitable to your industry, reach out to Kor-Pak.

Crane Maintenance: Procedures For Servicing Cranes

When a facility needs to move heavy equipment and supplies to other areas, workers may use overhead cranes. Overhead cranes allow loads to move across the space through the air instead of along the floor. These cranes are used along with other materials handling equipment for more efficient processes.

Since this equipment goes through daily use, workers should engage in crane maintenance to ensure equipment runs optimally and that any worn or damaged components are serviced at the right time.

Crane Maintenance Procedures

Maintenance procedures should align with the manufacturer’s crane maintenance and repair recommendations. There are many overhead cranes in use, along with different types of load lift attachments. Using the manufacturer’s directions makes it easier to design a preventive maintenance program for that specific crane so that no components are overlooked.

In addition, the Occupational Safety and Health Administration (OSHA) provides maintenance requirements for overhead cranes and gantries. Here are some basic procedures for servicing cranes.


Before performing maintenance, staff should inspect all aspects of the crane to identify any warning signs of damage or excessive wear and tear. Types of inspections you may perform include an area evaluation, preliminary equipment check, and daily equipment safety check. The daily equipment safety check should focus on the bottom block assembly, all electrical and power systems, the brake systems, and all miscellaneous items.

Hook Maintenance

Hook maintenance involves replacing hooks with wide openings from the standard 15% nominal opening. You should also replace hooks with permanent deformations or section wear that reaches a 10% height.

Pulley Maintenance

Pulleys with a 10% wall thickness for sheaves or rope wear that’s 25% of its diameter at the bottom should be replaced. Rims that are cracked or damaged should be replaced as well. Check the pulley to see if its rotation is flexible and doesn’t jam.

Brake Maintenance

The brakes, brake drum, and wire rope should be inspected carefully. The pin should not have more wear than 5% of its diameter. Also, the side wheel and brake shoe should have a gap that is equal to each other.

When evaluating the brake drum, ensure that the surface temperature does not exceed 200 degrees Celsius and that the groove surface area should be around 60% with a depth of 3mm. In addition, the wire rope should have no broken strands as the rope along the drum should be tightened.

Reducer Maintenance

Check the reducer for any leaks while looking for any loose screws along with the feet, bolts, and joints. In addition, you will want to inspect the wear of the teeth on the reducer, as the wear should not be more than 15% along with the crane housing mechanism.

Additional Maintenance

Additional servicing may focus on lubricating all lubrication points, replacing failed safety devices, and motor replacement. You may also need to replace any pins or screws that are badly worn, and check the reel for damage.

Keep in mind that maintenance standards exist for other types of cranes. For example, OSHA also has requirements for crawler locomotive and truck cranes. So you need to develop a preventive maintenance program that reflects the components present in your crane that will require a constant inspection on a daily or periodic basis. For more information about crane maintenance, contact Kor-Pak.

Industrial Gearboxes: Types and Applications

For industrial processes, motors and other driving devices supply mechanical power to components to perform specific tasks. The amount of power provided can vary, which may at times be a higher power or speed that other components down the line can safely handle. Industrial gearboxes take the mechanical power and modify it so that the speed, torque, or other properties match better the operational power required for processes.

Gearboxes rely on the gear’s teeth and their orientation to modulate the power. Typically, straight teeth on the gear provide lower speed for applications, while a gear with spiral (helical) teeth offers higher speeds. Thus, a company has different gearboxes to select from based on their operational needs.

Types and Applications

Helical Gearboxes

Helical gearboxes have spiral teeth as the gearbox is fixed at an angle. This angle allows for more teeth to interact with each other in the same direction. As a result, this type of gearbox provides lower power. It may be found in elevators, coolers, conveyors, extruders, and heavy industrial applications.

Bevel Gearboxes

Bevel gearboxes have straight and spiral gear teeth. They are standard gearboxes for automobiles and power plants.

Bevel Helical Gearboxes

Bevel helical gearboxes have gear teeth on a cone-shaped surface as the teeth are curved. This type of gearbox is placed on non-parallel shafts as it provides rotary motions. Mining and quarry applications commonly have bevel helical gearboxes.

Worm Gearboxes

A worm gearbox has a wider wheel breadth. A screw thread, called the worm, on the axis meshes with the wheel’s teeth along the peripheral edge to turn the wheel. For industrial applications, the work gearbox is used in conveyor belts and lifts. They are also found on guitar tuning instruments.

Planetary Gearboxes

Planetary gearboxes get their names due to their designs that are similar to the solar system. For example, a center gear is like a sun as planetary gears rotate around the center mesh gear and a ring gear. Planetary gearboxes are found in cranes, lifts, and many machine tools.

There are many additional gearboxes other than the ones mentioned above. The gearbox may be specially designed for a specific operation, such as a crane duty gearbox made for construction and mining applications.

Gearbox Operation

Keep in mind that all gearboxes work in a very similar fashion. Gears will rotate based on the directional orientation of the power input and the gear’s direction. The speed and torque output can change depending on the size of the gears and the number of teeth on the gear wheel. So the lower the gear ratio, the higher the speed and less torque, while the higher gear ratio provides a lower speed and higher torque.

Industrial gearboxes are designed out of durable and strong materials to handle daily operations for extended periods. However, they may undergo excessive wear and tear as well as experiencing warning signs of potential malfunctions. Therefore, they should undergo regular inspection and maintenance to ensure the gearbox runs at its optimal level.

For more information about industrial gearboxes, reach out to Kor-Pak.

6 Considerations When Choosing a Coupling

Couplings are used in virtually every piece of power transmission equipment. Connecting motor and gearbox/reducer shafts to conveyors, pumps, compressors, and other machinery transmit torque while absorbing vibration and facilitating disassembly and maintenance.

The Importance of Coupling Selection

Whether designing new machinery or performing maintenance on something that’s seen years of service, it’s vital to use the proper coupling. But, unfortunately, choosing the cheapest or the best delivery is a recipe for performance problems and premature failure.

What’s more, when replacing a failing coupling, recognize that the OEM may not have specified one of the best quality. A coupling more appropriate to your application may last longer and lower your maintenance costs.

So with that background, let’s look at what your coupling supplier needs to know so they can recommend the most suitable product.

1. Torque and Speed

Handling these is the primary role of the coupling. Your coupling supplier needs to know both. Note that couplings are designed with an overload capability, typically 200% of the catalog torque limit, to accommodate start-up loads.

2. Service Factors

Where will the coupling be installed, and what conditions will it see? For example, if it’s going outdoors, exposure to UV, ozone, low temperatures, and moisture likely take elastomeric couplings out of contention. Ask for couplings proven in your application and take manufacturer recommendations into account.

3. Space Available

The two factors are the gap between the shafts and the clearance around them. Some couplings, especially elastomeric units for high power and torque applications, have large outside diameters, so identify any restrictions.

When considering space constraints, you may encounter “torque density” or “power density.” This is the rated torque divided by the OD. Gear couplings have some of the highest torque density numbers.

4. Precision Required

In the context of couplings, this refers to:

  • Tolerance for angular and offset misalignment (you may need to trade one for the other)
  • Backlash (a key consideration in precision motion control)
  • Windup (technically, torsional deflection)

For each of these, determine the limit of what’s acceptable and communicate it to your supplier.

5. Accessibility and Maintainability Considerations

If access to the coupling is difficult, it’s essential to select for long life, low maintenance requirements, and ease of repair/replacement. For example, avoid couplings that need lubrication (like gear couplings) and consider repairable ones by replacing only the flexible elements. (Grid coupling elements are often the least expensive.)

6. The Vendor

Find a vendor that works with a long list of coupling manufacturers and understands what your application needs. Ask about availability, stocking policies, and delivery: when a coupling does go bad, you want to know you can get a replacement quickly! Consider price only once you have candidates that will meet the performance requirements.

Get the Right Coupling for the Job

Shaft couplings may appear inconsequential, but that’s only until they fail. When choosing new or replacement couplings, consider all aspects of the application and share these with your vendor. Kor-Pak works with leading coupling manufacturers and can advise on what you should use. Contact us to get started.

Crane Inspections: When, Why, and How?

On any job site, safety must always be the most critical consideration. Statistics show that for 2019, more than 5,000 workers died while doing their jobs. 20% of these fatalities were in the construction sector, highlighting the need for regular on-site equipment inspection.

Cranes are an essential piece of equipment on any construction or manufacturing site. Therefore, site workers must follow safety guidelines and regulations correctly. This includes scheduling both frequent and periodic inspections.

In this blog post, we will highlight the when, why, and how of crane inspections. So read on!

Requirements for Crane Inspections

As per the 1910.179 standard from the Occupational Safety and Health Administration, ASME B30.2, and State Regulations, several requirements for carrying our satisfactory crane inspections are required.

A routine crane safety inspection schedule for cranes is essential to enhance workplace safety. Therefore, before the initial use of a crane, a full inspection is a must.

Only qualified OSHA inspectors are authorized to perform crane inspections. There are two types of inspections with regards to cranes: frequent inspections and periodic inspections.

At Kor-Pak, we offer a comprehensive array of Overhead Crane Services, including thorough inspections. On completion of inspections, a full written report is provided listing all deficiencies and recommendations.

What You Should Inspect Frequently

There is a range of inspections that should take place regularly, for example, weekly or monthly.

These include:

  • Cracked or deformed hooks
  • Maladjustments that interfere with normal operations
  • Leakage in hydraulic systems, pumps, valves, etc.
  • Defective hoist chains
  • Wire rope reeving system issues

At Kor-Pak, we provide repairs, modernizations, upgrades, training, and 24/7 support. We also prove a complete line of cranes and hoists for various industrial applications.

What You Should Inspect Periodically

Periodic inspections should occur at least several times a year. At each inspection, it’s essential to check on the following parts:

  • Loose rivets or bearings
  • Worn tires
  • Unsafe power plants
  • Brake and clutch system issues
  • Wear to chain drive sprockets
  • Overstretch of chains
  • Electrical apparatus issues
  • Inaccuracy in indicators

To ensure the proper maintenance of your crane, both frequent and periodic inspections should be scheduled into your calendar well in advance.

Your crane equipment’s age and current condition will also play a part in determining how frequently you should carry out inspections.

Schedule Regular Crane Inspections

Cranes are responsible for various jobs within the construction and manufacturing industries. They are beneficial for lifting heavy loads.

As with any other type of equipment, cranes can experience wear and tear over time. The above crane inspection checklist includes essential features of a crane that a qualified OSHA inspector should inspect.

Kor-Pak is your No. 1 team to contact if you seek quality crane inspections that meet all OSHA 1910.179, ASME B30.2, and State Regulations.

We help to ensure the smooth running of your business’s most essential equipment. 


Everything You Ever Wanted to Know About Storm and Parking Brakes

Mounting cranes on rails increases their utility in loading/unloading and other material handling tasks. However, it also creates another potential hazard: the risk of uncontrolled movement. Tall cranes used outdoors, especially in coastal regions, are vulnerable to high winds and wind microbursts. Earthquakes are another possible cause of unexpected motion in many locations, and the risk of collision with forklift trucks and similar machinery is ever-present throughout industrial and logistics operations.

Uncontrolled crane movement can be devastating, as is evident in a 2008 video of a crane collapse in Florida. It can disrupt operations, require expensive repairs and even cause loss of life. This is why storm and parking brakes should be considered essential on rail-mounted equipment. Here we explain these, outline how the various types work, and discuss when each should be used.

Rail Clamps and Wheel Brakes

Storm and parking brakes for rail-mounted equipment act either on the rail or on the wheels. The two categories are rail clamps and wheel brakes.

As the name suggests, clamps clamp onto the rail. This makes them appropriate for static situations where they act as parking brakes. In contrast, wheel brakes apply friction to the wheel (usually the idler wheels of cranes.) Thus, while wheel brakes are intended for static use, they can be used as dynamic brakes in emergencies.

Rail clamps come in two forms: clamps that grip onto the sides of the rail and press brakes that push down on the top. Clamp mechanisms usually include rollers that run along the tops of the rails. Retractable systems are available for high-speed cranes where rollers would add additional resistance.

Press brakes use the crane’s weight to lock it in position while clamps rely on spring force (which can exceed 1,000 kN.) Press brakes are used where the rail top is flush with the roadway and inaccessible to side clamps. They also do a better job of accommodating variation in rail height.

Brake Application and Release

Rail clamps, rail press brakes, and wheel brakes are all designed for fail-safe operation. Spring-loaded mechanisms force the clamps or friction material against the rail or wheel. Then, power is applied to pull the clamps off.

With clamps and press brakes, the release is almost always performed by hydraulics. (Some smaller units have electric release mechanisms.) Likewise, wheel brakes are predominantly electric release. However, hydraulic systems are more complex, requiring a pump or pumps plus reservoir, and should be inspected for leaks periodically.

When selecting or specifying storm and parking brakes, remember to consider how they are released in the event of a power failure. Again, the manufacturers or a knowledgeable distributor will be able to advise.

Partner With Specialists

As safety-critical components, it’s essential to use only the correct storm and parking brake systems and components for your application. Kor-Pak works with multiple manufacturers and can advise on the various types and styles. Replacement parts and servicing are also available. Contact us for more information.