How Hydraulic Clamps Are Used in Mining Applications

Hydraulic clamps are one of the most common industrial tools. Check out almost any workshop, and you’ll likely see dozens in various shapes and sizes.

So why has the mining industry used them on such a limited basis? Over the last decade, there has been a steady increase in the use of hydraulic clamps in the mining industry.

In 2020, the mining industry in the US produced more than $82.3 billion in minerals. As operations scale up, companies are starting to pay close attention to anything that improves efficiency and safety.

Read on as we look at some of the critical applications of hydraulic clamps in mining.

The Benefits of Hydraulic Clamps in Mining

When you’re dealing with something as critical as mining, one of the most important targets you can aim for is reliability. This reduces downtime and makes processes repeatable.

Hydraulic clamps allow you to position components precisely and hold them in place with the correct amount of force. This, in turn, makes sure your operation is as efficient as possible.

Another benefit of using hydraulic clamps in a mining application is a distinct reduction in shutdown time. By using the proper hydraulic clamping tool, you reduce cycle times and improve safety as well.

How Hydraulic Clamps Help Increase Productivity in Mining

The combination of reduced shutdown and faster cycle times goes a long way to improving productivity. Additionally, the cumulative effect of less maintenance and higher operator confidence boosts productivity even more.

Take, for example, the problem of supporting incline belts. Traditionally, belt components might be supported by manually applied bolts and portable clamps.

In the case of a series of incline belts that span a longer than average distance, the stress placed on the belts may be far too high for portable clamps and other traditional methods.

Installation of these belt systems is a complicated task. However, using a hydraulic clamp system can significantly reduce the time it takes to get up and running.

Maintenance of such high-tension belts may also present a high difficulty level. For example, an operator may need to install several bolts for each fixture and must precisely tighten down each.

However, the correct application of hydraulic clamps can drastically reduce this complexity. First, an operator must position the belt element and press a button to secure the fixture properly.

How Hydraulic Clamps Improve Safety in Mining

A repeatable and reliable process is vital in an environment with its fair share of safety concerns.

A sudden release of tension on an incline belt is not something any technician wants to experience. Because these belts are heavy and under immense load, any failure can be a critical safety event.

The mining applications of hydraulic clamps go a long way to reduce risk and directly impact operator safety. Using hydraulic clamps, a belt system can be easily disassembled in sections and inspected or replaced.

Choosing the Right Hydraulic Clamps

Any system is only as good as the quality of its components. Therefore, getting the correct hydraulic clamps for each situation is essential. In addition, choosing the proper application will reduce calibration, maintenance, and refitting delays.

Still have questions about the use of hydraulic clamps in mining? Are you ready to purchase? Contact us today, and we will ensure you get the perfect system and can confidently operate.

What to Know About Roller Coaster Brakes, Sensors, and Blocks

It’s been years since roller coasters used the original, simple design from 1864, when the first Roller Coaster was commissioned.

As more and more customers have flooded into parks worldwide, safety has become paramount.

Operators need to maintain a careful balance between throughput and safety and are required to comply with many rules and regulations. For these reasons, the importance of excellent brakes, sensors, and blocks cannot be understated.

What are Blocks and Sensors?

Roller coasters are divided up into sections called blocks. Each block is separated by a braking point. The blocks are designed to keep two trains from being in the same block at the same time.

Sensors work with the roller coaster block system to keep track of where each train is. These sensors, usually inductive, work off proximity. If, by some chance, two trains reach the same block at the same time, the sensors signal the brakes to stop the rearmost train.

How Roller Coaster Brakes Work

Whether you’re talking about wooden coasters or the more modern stainless-steel version, the basic concept is the same. Stopping a roller coaster relies mostly on friction applied at the right time and with the right force.

Roller coaster components work together to slow trains down at the right time and allow them to speed up again. Different styles of brake are used depending on what the situation demands.

Broadly speaking, roller coaster brakes fall into two categories – Trim and Block.

Trim brakes slow trains down but do not stop them – they “trim” speed from the train. A roller coaster block system stops trains, typically to stop them from impacting others at the station or entering a section that already has a train in it.

There are also several types of brakes that fall into these categories.

Fin Brakes

These brakes hang down over the rails of the track. They squeeze using a carefully controlled hydraulic system, closing on metal fins on the underside of the train. The friction caused gradually slows down the train.

Fin Brakes should be inspected daily. Inspections should ensure they are firmly fixed to the train and have a good braking surface.

Magnetic Brakes

These are usually made up of two rows of magnets that interact with a magnetic fin behind the train. The eddy forces generated push against the direction of the train, causing it to slow.

Due to the physics of the magnetic force, these brakes cannot be used to stop the train completely. This usually means that a fin brake is fitted alongside to halt the train completely.

Skid Brakes

You would expect to find skid brakes on an older roller coaster braking system. They use large ceramic plates that rise and push against the bottom of the track.

Their use has mostly fallen out of fashion over time, not being fitted to newly constructed systems.

Quality Safety Requires Quality Components

Coaster brakes and sensors are the lynchpins of safety when it comes to roller coasters. It’s important to ensure you’re performing regular maintenance and installing good quality components.

For all your requirements, don’t hesitate to contact us today, and our qualified sales personnel will get in touch to help you find exactly what you need.

A Guide to Ski Lift Maintenance and Parts

You undoubtedly take your ski lift maintenance seriously. That’s why keeping the ski lift brakes up to code is essential.

Ski lifts use a complex motor-driven conveyor system to transport riders safely uphill. Hundreds of thousands of dollars each year go into the maintenance of ski lifts to ensure their safety and compliance with state and federal inspection requirements.

You don’t want to let lift maintenance fall behind. New technology continues to improve the functionality of ski lift systems. Keep reading to learn more about the importance of lift maintenance.

Lift Maintenance Year Round

You understand the year-round hard work to ensure ski lifts are up to code. However, no one knows a resort’s ski lifts like its lift mechanic! That’s why when repairs are needed; you want the best replacement parts to keep the lifts running smoothly year-round.

After a long winter season of non-stop use, ski lifts endure a lot of wear and tear. Plus, if you plan to run the lifts year-round, you probably need to replace the breaks

Ski Lift Types

Different types of chairlifts can determine the kind of maintenance needed. The most common is the fixed-grip lift, where the chairs are welded onto the cable. 

Detachable lifts have chairlifts clamped onto the cable, meaning they can be removed from the cable. This is a more stable design. It also allows the chairs to slow down for loading and unloading.

Plus, the detachable lifts can move at faster speeds. High-speed lifts are the way of the future. They can improve resort guests’ overall experience.

How Chairlifts Work

A chairlift is suspended from a cable above and pulled up the mountain using a hydraulic tensioning system. The cable passes over compression towers that are at regular intervals up the mountainside. 

At least two terminals on either side of the chairlift have a bullwheel to direct the cable or rope around the wheel. The primary braking system is located at the base terminal or a drive bullwheel.

The top of the mountain usually has the return bullwheel, although these can sometimes be switched around. The cable is tensioned to account for variations in temperature, as well as the weight of passengers.

This is maintained by either hydraulic rams or a counterweight system that automatically adjusts the position of the bullwheel carriage. 

Ski Lift Brakes

The brakes on a ski lift are critical to its functionality and safety. Therefore, ski lift components include safety and backup systems that rely on functioning brakes. For example, the drive bullwheel has an emergency brake, a service brake, and an anti-rollback device.

It is rare for ski lift accidents, but if they do, they can be devastating. You may remember the incidents at the Sugarloaf resort in Maine. In one instance, the ski lift began to move backward after a series of unfortunate mechanical failures.

It started when the drive shaft broke. Next, a faulty switch caused the anti-rollback system to malfunction and not lock the lift in place. Then the emergency braking system failed to activate automatically.

These incidents, including a cable failing in high winds, are due to aging infrastructure of chairlifts built in the 1970s and 1980s. Sugarloaf spent $1.5 million on lift repair and replacement costs, along with the cost of legal claims from the injured skiers and riders.

In addition to replacing older chairlifts, workers drained the oil from the gearboxes on all of the lifts and meticulously examined components for excessive wear using a scope.

Lift Maintenance Must-Do’s

Does your lift maintenance need an upgrade? Don’t cut corners when it comes to replacing vital ski lift parts. You know the complexity of operating ski lifts, so you can never be too careful!

It might be time for a ski-lift brake overhaul. Check out our complete supply here.


Understanding the Wind Turbine Braking System and Replacement Brake Pads

In the United States, an average of 3,000 wind turbines are built and installed annually. Since 1980 the total is now over 70,800 turbines. That is a lot of towers, nacelles, and blades standing tall across the country.

Critical to their safe operation is the wind turbine braking system.

Over a turbine’s 20-year lifespan, the brakes can perform between 500 and 1,000 emergency stops. Therefore, replacement brake pads and brake maintenance are essential to a wind turbine’s uptime.

This article discusses different braking methods and where to get replacement brake pads.

Wind Turbine Braking Applications

Two elements to consider with wind turbine braking systems are the speed of the wind turbines (low and high-speed) and the use of mechanical or aerodynamic forces.

Low-Speed Braking

Lower speed systems have different needs compared to high-speed turbines. They comprise a disc, or braking track, and brake pads. Hydraulic clamps and calipers around the braking disc create friction to slow and stop the blades.

High-Speed Braking

High-speed systems engage the generator and apply torque to the gearbox. This reduces the output power and slows the turbine. The higher the number of teeth and the larger the diameter of the brakes, the better the braking performance.

Aerodynamic Braking

Aerodynamic braking happens when the blades are turned 90 degrees to the wind to remove resistance on the blades. The wind turbine brake controller will help the turbine stop smoothly.

Mechanical Braking

Mechanical braking supports the aerodynamic braking. It also slows the turbine during adverse weather and ensures the nacelle remains stable during maintenance.

Types of Wind Turbine Braking Systems

The braking systems to stop the blades from spinning, or the nacelle from turning, encounter different loads and forces, requiring a variety of designs.

Yaw Brakes

Yaw brakes are a caliper system controlled with hydraulics. They lock the nacelle into or out of the wind by acting on the yaw ring or mounted onto the non-driving end of the yaw motor.

Models with side mounts are for light and medium-duty applications, while a base mounted caliper is best for heavy-duty applications.

Rotor Brakes

Rotor brakes withstand the high torque levels generated by the wind turbine’s gearbox. They act on the main rotor shaft using hydraulic, spring-applied calipers. With their position between the gearbox and generator, rotor brakes handle the emergency stops during dangerous weather.

Controlled by the wind turbine brake controller, rotor brakes offer braking power ranges from 100N to 1MN, depending on the brake model and turbine size.

Where to Get Replacement Brake Pads

The one constant among the variety of braking systems is brake pads. Kor-Pak offers a full range of replacement brake pads for wind turbine systems and can cater to OEM and aftermarket parts across the wind turbine industry.

Contact us today to learn how our industrial brake and friction materials experts can help you.


Different Types of Bearings Used in the Paper Industry

The global paper and pulp market is set to reach $370 billion by 2028.

That market — which makes everything from receipts and catalog paper to post-it notes and paper-based packaging — relies heavily on several types of bearings. Moreover, papermaking machines require these bearings to run well.

Importance of Bearings in Papermaking Machinery

Papermaking machines have three main areas:

  • A wet end section that pulls the bulk of water and moisture out of the pulp
  • A drying section that removes the remaining moisture
  • A finishing section that ensures a standard smoothness, thickness, and glossiness to the paper

The conversion of wet pulp into dry paper relies on those three sections working together. Moreover, those three sections rely on bearings to keep the rolls, gears, motors, rope sheaves, and other equipment functioning correctly. 

All paper industry bearings are manufactured to work toward a long bearing life, an excellent limiting speed, and quality bearing materials that can withstand high temperatures. 

Types of Bearings in the Papermaking Industry

Paper industry bearings come in four main types: spherical roller, tapered roller, cylindrical roller, and ball bearing. 

Spherical Roller Bearings

Spherical roller bearings are the most commonly used bearings in the papermaking industry. Therefore, they’re critical to the success of the three main sections. 

In the wet section, they’re used in forming rolls, suction rolls, center press rolls, and anti-deflection rolls. In the dryer section, both guide rolls and dryer rolls use them. Lastly, the calendar rolls of the finishing section use spherical roller bearings.

Typically made of chrome steel with a cage of brass, polyamide, or sheet steel, the spherical roller bearings can support both radial and axial loads.  

Tapered Roller Bearings

Tapered roller bearings are often used for secondary processes and equipment such as pumps, gears, and pulpers.

Also made from chrome steel, these bearings can function well at high temperatures and speeds. In addition, they can support significant axial, radial, and combination loads. 

Cylindrical Roller Bearings

Cylindrical roller bearings are not widely used in papermaking machinery. However, they’re sometimes customized to fit special operations. 

Most are made from low-carbon steel or alloy and can operate with heavy radial loads at moderate speed.

Ball Bearings 

Ball bearings come in two main types: deep groove and angular contact. 

Both bearings tend to be used in secondary equipment such as gears, pulpers, and winders. However, the deep groove ball bearings are often used in the spreader rolls of the finishing section.

Often made of chrome steel, they can accommodate radial, axial, and combination loads at various speeds. 

Learn More About Bearings 

The paper industry relies on several types of bearings to make the products that people and businesses use daily. Therefore, knowing about the structure and function of each bearing is essential to the overall success of papermaking machines.

The next step is sourcing suitable bearings. Contact Kor-Pak to find out how we can help.



Necessary Brakes for a Movable Bridge

In 2021, the industrial brakes market attained a value of $1.234 billion worldwide. According to market research, this industry will reach $1.816 billion by 2028.

This translates to a compound annual growth rate of 5.6% over the forecast period.

Movable bridge operations need high-quality and robust braking systems. Your brakes for movable structures should give excellent performance in extreme temperatures and high friction environments.

There are a variety of braking systems in the market for all types of movable bridges. 

Three Phase AC Magnetic Drum Brakes

These industrial brakes are spring applied and electrically released. You’ll need to select the right brake size to give you the required braking torque.

Your braking size should also be able to control overheating during the braking operations. These braking systems also have an intermittent rating of up to 120 operations every hour.

Thruster Drum Brakes

These are spring-applied, fail-safe brakes. The thruster comprises a 3-phase electro-hydraulic with a motor and hydraulic fluid.

After you remove power, the friction lining of the brake show will apply to the rotating drum. The process generates friction that eventually stops the motion of the rotating wheel.

Thruster drum brakes are efficient and economical. Besides, these brakes can accommodate high temperatures when using silicone fluid and high-temperature kits.

EBH Braking System

This is a powerful drum brake with an automatic wear adjustment. EBH brakes for movable structures also have braking torques ranging from 140 to 3500Nm.

Usually, you’ll find the EBH industrial brakes in trolleys, conveyor belts, and slewing gears.

SB 23.3 Industrial Brakes

These braking systems fall under the SB series and stand out for two reasons – fast closing times and variability. In addition, the SB 23.3 industrial brakes are highly versatile and provide user-friendly handling.

Due to the ease of application, you’ll find these brakes for movable structures in various industries.

SKP 95 SA Fail Safe Brakes

These braking systems fall under the SKP series with a single-acting (SA) brake. The system generates the braking force in one-half of the brake.

The other half then slides towards the first half with the help of a forceful, low friction system. The process enables the braking system to self-align.

So, these braking systems are suitable for small spaces and applications with axial movement.

Movable Bridge Brakes

Regular maintenance will ensure that your braking system provides extended service. It’s also essential to have your hydraulic oil cleaned often.

Further, check oil levels and replace the oil filters regularly. This measure helps you avoid unwanted repair expenses and downtime.

Contact us for more industrial brake options for your movable bridge operations.


Overview of Cranes Used in the Lumber Industry

Experts expect the global lumber industry crane market to grow at an annual growth rate of 3.4%.

Cranes are an integral part of many transport operations and industrial mining worldwide. These machines simplify the movement of loads. They also ensure the safety of the workers throughout the process.

Different goods require different types of cranes to manage their weight. For example, lumber cranes need certain qualities such as lightness, quick boom movements, and maneuvrability. This allows them to function in rough, steep topography and narrow spaces.

Here are different types of cranes used to carry wood.

Harvester Cranes

These have rubber tires and carry a harvester head at the end of an extendable and articulated boom.

The head of the crane is an integrated unit that takes hold of the tree and chops it. It then points the trunk in the right direction and places it on the ground to form a stack.

Cranes for lumber such as these should possess the ability to work in tricky terrains. Such places are high mountainsides and confined spaces.

Forwarder Cranes

These cranes for wood pick timber from the ground put them into its cradle, and take them to the roadside. They take huge loads at a time and transport them as fast as possible.

Forwarder cranes use a knuckle boom with telescopic sections. They have specialized design features that enable them to work fast and efficiently. They can also go through narrow paths and save space.

A unique design feature of the forwarder crane is a slewing axis that can tilt up to 20 degrees. This is so that the axis of rotation is vertical regardless of the slope of the crane.


The L-crane is one of the favorites in the lumber industry. The main boom is long, while the knuckle boom is shorter to ensure an outstanding working geometry. In addition, the main boom doesn’t need to move much due to the shorter knuckle boom.

While using the L-crane, the operator doesn’t have to spend lots of time steering and controlling it. This means that it’s easier to focus on other tasks.


This type of crane is more compact and can fold to the direction of motion. This makes it more flexible and allows it to be fully loaded up to the permitted total height.

Due to it not being positioned in the loading area, the operator doesn’t need to leave the vehicle to reposition the crane — minimizing the risk of accidents.

Lumber Industry Cranes

The lumber industry’s demand for wood cranes has been growing fast. This trend is due to the increased use of wood products.

Construction requires composite wood and cardboard boxes to deliver packages in e-commerce. This has increased the need for timber, increasing the demand for cranes to extract and deliver it.

Wood handling cranes are adaptable and custom-made to suit your changing needs. Contact us today to learn more about lumber industry cranes.

A Brief Look Into Our Railcar Parts Catalog

Kor-Pak Corporation is a world leader in railcar parts and components. We manufacture an extensive product line that meets or exceeds all industry standards.

What Our Catalog Has to Offer

Our railcar parts catalog offers a comprehensive selection of products that can meet the needs of any railcar operator. We have everything from brake shoes and pads to couplers and draft gears.

We also carry a diverse range of replacement parts for railcars. So whether you need a new door, railing, or headlight, we have the parts you need to keep your railcar in top condition.

Featured Railcar Parts

In addition to our railcar parts, we also offer a full line of railway products. So we have the products you need and want to keep your railway running smoothly from track infrastructure to locomotives.

Some of the featured railcar parts in our catalog include:

Brake Shoes and Pads

We offer a variety of brake pads, including RPAD07A, RPAD08A, RPAD09A, and more.


We list four types of couplers: the AAR Type E, Janney Type E, Cast Steel Knuckle, and Integral Casting Knuckle. All of these couplers are made from cast steel for strength and durability.

The AAR Type E is designed for use with AAR Type F threadless trucks, while the Janney Type E is used with Janney Type F threaded trucks. In addition, the Cast Steel Knuckle is for use with AAR Type E and Janney Type E knuckle couplers. Finally, the Integral Casting Knuckle is also used with AAR Type E and Janney Type E knuckle couplers.

Draft Gears

We list six different kinds of draft gears. Each is designed for a specific purpose.

The Econo Gear is an essential gear that is simple and easy to install. The Heavy Duty Gear is designed for heavier rail cars and can withstand more wear and tear. In addition, the lube-for-life gear is maintenance-free and does not require lubrication.

The frictionless gear is designed for high-speed rail cars and reduces friction for a smoother ride. In addition, the anti-hunting gear helps to keep rail cars from derailing, and the auto-lubricating gear is self-lubricating for easy maintenance. With such a variety to choose from, it’s easy to find the perfect draft gear for any rail car.

Our railcar parts catalog is a comprehensive resource covering all of the railcars’ significant parts and components. It includes the dimensions, weights, and materials used for each piece. The catalog also contains photographs and illustrations to aid in identifying parts.

Where to Get Your Copy

The steady resurgence of the railroad industry is evident. Browse our railcar parts catalog today and see what we have to offer. Visit our website to learn more about our railcar parts catalog and other railway products. Get your copy today!

Crawler Crane Maintenance Tips

A properly maintained crane can be the difference between life and death on a construction site. On the other hand, a poorly maintained crane brings about several safety threats and is quite a serious situation! 

All cranes need regular and preventative maintenance to ensure longevity! This extends to crawler cranes in the industry. Read below for our guide on how to keep your crawler craned well maintained!

Hydraulic System Maintenance

Crawler cranes have a variety of hydraulic systems onboard to operate the crane effectively. The use of these hydraulics should have daily checks performed before use. If a small leak is evident, it needs repairing as soon as possible before any further work occurs. 

After the workday is done, the operator must take any strain off the hydraulic parts. This will keep any unwanted pressure off the hydraulic seals and ensure the system’s longevity.

Crawler Crane Alignment

After extended years of hard use, a crane can lean to one side causing extra tension on the side that it leans further over to.

Crane operators should check the alignment of the crane every day and report any abnormalities immediately.  If the crane shows signs of misalignment, then a reputable repair service is necessary. The crane needs repairs before any further work is to be done.

Check Chain and Connections for Wear

The chains and connections that form part of the hoist should be able to withstand years of use however they can be prone to rust and wear. Therefore, as part of a maintenance checklist, the chain and connections should be checked daily for any signs of wear

If severe wear and rust are evident over time, a professional should be called to repair it immediately. A hoist snapping is a very serious safety threat for everyone on site.

Check Tracks or Tires for Wear

Depending on the kind of outrigger you have, the tracks or tires are one of the most safety-critical components found on a crane. This is because the tires or tracks need a decent amount of thread to move heavy loads around safely.

Once the tread wears away, the crane can lose traction and lose its load in many ways. This should be checked regularly and replaced when needed. If your crane works in snow, the snow tires need evaluation in summer before installation and vice versa for the summer tires. 

Rely on Your Equipment

Operators should be able to rely on their equipment to keep them safe and working hard. By following these simple guidelines and performing routine checks, the job will get done right and on time. Crawler cranes are tough equipment but shouldn’t be pushed past the breaking point!

Are you looking for the toughest parts to repair your crawler crane? Then, head on to our products page and find the very best parts to keep your crane on the move today!

What To Know About Floating Cranes for Marine Construction

The crane has been essential to construction since the Greeks developed it (around 700-650 B.C). It has helped lift and carry loads during large construction projects. But, what if your project is on the water?

We have created this guide to understanding floating cranes. Read on to learn more about floating cranes and when you might need one for your construction job.

What is a Floating Crane?

Floating cranes are needed when doing marine construction. They are useful when building ports and bridges over water. They move heavy equipment from one place to another.

They take the place of a land crane when using one is not possible for your project. They allow you to complete the tasks of a regular crane but on the water.


You can use a floating crane barge to drive interlocking metal sheets into canal and river banks. The piling protects the bank and allows for better land retention. However, piling often must be installed from the water,  making a floating crane crucial.

Moving Materials

Crane barges take large amounts of materials to and from worksites. They can carry away materials from demolition sites as well. They will also carry heavy machinery, to the sites such as diggers and trucks.


Floating cranes are ideal for dredging waterways. They can clear the sediment and debris from the bottom of the water. Crane barges can then carry away the debris to a deposit site.

Types of Cranes

The type of crane you will need depends on your marine construction project. There are several types to choose from.

Stiff Boom

A stiff boom crane moves general cargo. It is good for moving fragile items because there is little to no drift when lifting. Instead, it lifts straight up and straight down.

It is the best type of crane if your project needs items lifted over a wall. This is because the hoses and cylinders of this type of crane are inside and protected from the elements.

Telescopic Boom

A telescopic boom crane can extend and retract. This feature allows you to place your items precisely. These cranes can also lift cargo with little to no drift.

Knuckle Boom

Knuckle boom cranes are easier to maintain because they have fewer joints. These cranes are not able to lift heavy loads for an extended time. They are meant to load and unload materials.

Their most common use is on vessels with a large deck or fixed platform.

Foldable Telescopic Boom

As its name suggests, foldable telescopic boom cranes can fold into a compact size. It has two booms attached to knuckles so they can move in and out. Think of it as a large human finger!

Floating Cranes and Marine Construction

Floating cranes are essential to the undertaking of a marine construction job. There needs to be a way to move and lift heavy materials when working on the water. The type of floating crane you choose will depend on the type of marine construction you do.

For replacement parts and services, contact us today!